Natural frequencies of human corticothalamic circuits.
نویسندگان
چکیده
The frequency tuning of a system can be directly determined by perturbing it and by observing the rate of the ensuing oscillations, the so called natural frequency. This approach is used, for example, in physics, in geology, and also when one tunes a musical instrument. In the present study, we employ transcranial magnetic stimulation (TMS) to directly perturb a set of selected corticothalamic modules (Brodmann areas 19, 7, and 6) and high-density electroencephalogram to measure their natural frequency. TMS consistently evoked dominant alpha-band oscillations (8-12 Hz) in the occipital cortex, beta-band oscillations (13-20 Hz) in the parietal cortex, and fast beta/gamma-band oscillations (21-50 Hz) in the frontal cortex. Each cortical area tended to preserve its own natural frequency also when indirectly engaged by TMS through brain connections and when stimulated at different intensities, indicating that the observed oscillations reflect local physiological mechanisms. These findings were reproducible across individuals and represent the first direct characterization of the coarse electrophysiological properties of three associative areas of the human cerebral cortex. Most importantly, they indicate that, in healthy subjects, each corticothalamic module is normally tuned to oscillate at a characteristic rate. The natural frequency can be directly measured in virtually any area of the cerebral cortex and may represent a straightforward and flexible way to probe the state of human thalamocortical circuits at the patient's bedside.
منابع مشابه
Corticothalamic projections control synchronization in locally coupled bistable thalamic oscillators.
Thalamic circuits are able to generate state-dependent oscillations of different frequencies and degrees of synchronization. However, little is known about how synchronous oscillations, such as spindle oscillations in the thalamus, are organized in the intact brain. Experimental findings suggest that the simultaneous occurrence of spindle oscillations over widespread territories of the thalamus...
متن کاملPhysiology and pharmacology of corticothalamic stimulation-evoked responses in rat somatosensory thalamic neurons in vitro.
Whole cell current- and voltage-clamp recording techniques were employed in a rat thalamocortical slice preparation to characterize corticothalamic stimulation-evoked responses in thalamic neurons. Three types of corticothalamic stimulation-evoked responses were observed in thalamic neurons. Of thalamic neurons, 57% responded to corticothalamic stimulation with purely excitatory synaptic respon...
متن کاملThalamocortical and corticothalamic pathways differentially contribute to goal-directed behaviors in the rat
Highly distributed neural circuits are thought to support adaptive decision-making in volatile and complex environments. Notably, the functional interactions between prefrontal and reciprocally connected thalamic nuclei areas may be important when choices are guided by current goal value or action-outcome contingency. We examined the functional involvement of selected thalamocortical and cortic...
متن کاملCortico-thalamic feedback: a key to explain absence seizures
Over the last years, decisive experimental data have been obtained concerning the biophysical mechanisms and ion channels properties important for seizure generation. Computational models have succeeded in proposing plausible mechanisms to explain the sudden emergence of hypersynchronized oscillations at ∼3 Hz (or 5-10 Hz in some species), which are associated with “spike-andwave” complexes in ...
متن کاملPathway-Specific Feedforward Circuits between Thalamus and Neocortex Revealed by Selective Optical Stimulation of Axons
Thalamocortical and corticothalamic pathways mediate bidirectional communication between the thalamus and neocortex. These pathways are entwined, making their study challenging. Here we used lentiviruses to express channelrhodopsin-2 (ChR2), a light-sensitive cation channel, in either thalamocortical or corticothalamic projection cells. Infection occurred only locally, but efferent axons and th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 29 24 شماره
صفحات -
تاریخ انتشار 2009